Higher Derivative Corrections to Black Hole Thermodynamics from Supersymmetric Matrix Quantum Mechanics
نویسندگان
چکیده
منابع مشابه
Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections
The local and global thermal phase structure for asymptotically anti-de Sitter black holes charged under an abelian gauge group, with both Gauss-Bonnet and quartic field strength corrections, is mapped out for all parameter space. We work in the grand canonical ensemble where the external electric potential is held fixed. The analysis is performed in an arbitrary number of dimensions, for all t...
متن کاملBlack Hole Thermodynamics from Quantum Gravity ∗
The semiclassical approximation is studied on hypersurfaces approaching the union of future null infinity and the event horizon on a large class of four dimensional black hole backgrounds. Quantum fluctuations in the background geometry are shown to lead to a breakdown of the semiclassical approximation in these models. The boundary of the region where the semiclassical approximation breaks dow...
متن کاملQuantum gravitational corrections to black hole geometries
We calculate perturbative quantum gravity corrections to generic eternal two-dimensional dilaton gravity spacetimes. We estimate the leading corrections to the AdS2 black hole entropy and determine the quantum modification of N -dimensional Schwarzschild spacetime. ∗ [email protected] † [email protected] In recent years, two-dimensional dilaton gravity has earned a great deal of attentio...
متن کاملHigher-order supersymmetric quantum mechanics
We review the higher-order supersymmetric quantum mechanics (H-SUSY QM), which involves differential intertwining operators of order greater than one. The iterations of first-order SUSY transformations are used to derive in a simple way the higher-order case. The second order technique is addressed directly, and through this approach unexpected possibilities for designing spectra are uncovered....
متن کاملStatistical Mechanics and Black Hole Thermodynamics
Black holes are thermodynamic objects, but despite recent progress, the ultimate statistical mechanical origin of black hole temperature and entropy remains mysterious. Here I summarize an approach in which the entropy is viewed as arising from “would-be pure gauge” degrees of freedom that become dynamical at the horizon. For the (2+1)-dimensional black hole, these degrees of freedom can be cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2009
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.102.191602